Numerical simulation of the fractional Langevin equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Langevin equation.

We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffu...

متن کامل

Critical exponent of the fractional Langevin equation.

We investigate the dynamical phase diagram of the fractional Langevin equation and show that critical exponents mark dynamical transitions in the behavior of the system. For a free and harmonically bound particle the critical exponent alpha(c)=0.402+/-0.002 marks a transition to a nonmonotonic underdamped phase. The critical exponent alpha(R)=0.441... marks a transition to a resonance phase, wh...

متن کامل

The Fractional Langevin Equation: Brownian Motion Revisited

It is well known that the concept of diffusion is associated with random motion of particles in space, usually denoted as Brownian motion, see e.g. [1-3]. Diffusion is considered normal when the mean squared displacement of the particle during a time interval becomes, for sufficiently long intervals, a linear function of it. When this linearity breaks down, degenerating in a power law with expo...

متن کامل

Numerical simulation of fractional Cable equation of spiny neuronal dendrites

In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion val...

متن کامل

Numerical Simulation of Ginzburg-Landau-Langevin Equations

This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as GinzburgLandau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thermal Science

سال: 2012

ISSN: 0354-9836,2334-7163

DOI: 10.2298/tsci110407073g